
EFFECT OF WALL CURVATURE WITH WAVY DOWNFLOW OF A THIN 

LAYER OF VISCOUS LIQUID 

Yu. Ya. Trifonov UDC 532.516 

Different wave regimes are considered for downflow of a thin layer of viscous liquid 
over the outer and inner surfaces of a vertical cylinder. A simple set of evolutionary 
equations is derived on the basis of the integral method from Navier-Stokes equations and 
the linear stability of its trivial solution is studied. Different linear solutions for the 
set obtained are calculated within the depth of the instability region by means of numerical 
methods. In contrast to case of downflow over a vertical plane where as a single external 
parameter there was Z -z = (RelZ/81Fi)z/6 (Re is Reynolds number, Fi = (o/p)3/gv 4 is film 
number), in considering wall curvature there are additional parameters: wall curvature R -l 
and Fi. The effect of all of the parameters on nonlinear wave characteristics is analyzed. 
It is demonstrated that an increase in wall curvature R -I always intensifies wave processes, 
and with flow over an inner cylinder wall of quite small radius a "catastrophic" growth in 
wave amplitude with movement within the region of linear instability is observed in calcula- 
tions. 

I. Two-dimensional downflow is considered for a layer of viscous incompressible liquid 
(Fig. I) over the outer (a) and inner (b) surfaces of a vertical cylinder. In future we lim- 
it ourselves to studying the evolution of only long-wave disturbances of the free surface of 
the layer for which we introduce a small parameter g = h,/L, where h, is scale of film thick- 
ness (for example, average thickness), L is longitudinal scale of disturbances (for example, 
wavelength). By considering a different scale for movement along coordinates r and z, and 
making the Navier-Stokes equations and boundary conditions dimensionless, after discarding 
terms 0(~) in the range g << Re <_ i/g we obtain 

a.+ au I ap i 
o-Y + V ar u'~z = O oz + g + ~ \o~ 2 -7"~-r ' 

Op/Or = O, O(ur)/Oz ~ O(vr)/Or = O, u --  v = O, r = R ,  Ou/Or --  O, ( 1 . 1 )  

r---- R--4-h(z ,  t), 

p = p o - - o  "~ -gF_ h + Ozi j" 

Here u is velocity along axis z; v is velocity in the direction of axis r; p is pressure; 
P0 is atmospheric pressure; g is acceleration due to gravity; p is liquid density; v is ki- 
nematic viscosity; R is cylinder radius; h is instantaneous film thickness; o is surface 
tension coefficient. Upper and lower symbols in (i.i) and in future relate to the case of 
downflow over the outer cylinder wall (flow over a wire) or an inner wall (flow in a tube), 
respectively. 

We note that retention in the boundary condition of a term with capillary pressure 
~~ih/Sz2 is correct if a liquid with large Fi ~ ReS/E ~ is studied, and this is fulfilled 
for the majority of experimental liquids considered [i]. 

It is easy to write the solution of Eqs. (i.i) appropriate with any liquid flow rates 
and relating to waveless downflow: 

u ~ - 7 7  1 - -  --9, ~ I •  ln-- N - ,  v = O ,  

P =  p 0 - - o ( ~ ) , _  h = h 0 = c o n s t .  

The s e a r c h  f o r  o t h e r  s o l u t i o n s  o f  Eqs .  ( 1 . 1 )  r e q u i r e s  d r a w i n g  on c o n s i d e r a b l e  c o m p u t i n g  
r e s o u r c e s ,  and i n  t h i s  work f o r  s i m p l i c i t y  we u s e  t h e  a s s u m p t i o n  o f  s e l f - m o d e l i n g  f o r  t h e  
longitudinal profile of velocity: 
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u(r, z , l )  -- iR/_h(l~(z,  t)/B) t - -  + 2 t ! ln-~-  , 

R+J, (1.2) 
q ( z , t ) = •  , Mrdr, 

R 
/•  ~= f /4  - (1 + hJ"~) ~ + (i 4-_ J~/RV(3/s - -  in (t • h/R)) .  

T h i s  p r o f i l e  s a t i s f i e s  t h e  c o n d i t i o n s  o f  a t t a c h m e n t  a t  t h e  w a l l  and  q u a l i t y  t o  z e r o  o f  t h e  
t a n g e n t i a l  s t r e s s  a t  t h e  f r e e  b o u n d a r y .  I n  a d d i t i o n ,  f o r  f l o w  w i t h  a s m o o t h  f r e e  b o u n d a r y  
( 1 . 2 )  i t  i s  c o n v e r t e d  i n t o  an a c c u r a t e  s o l u t i o n  o f  t h e  N a v i e r - S t o k e s  e q u a t i o n s .  At  t h e  l i m i t  
R § ~ ( f l o w  o v e r  a v e r t i c a l  w a l l )  f rom ( 1 . 2 )  i t  f o l l o w s  t h a t  

3q(z, t) " 6 6 ~ 
u(6, z. t) =,~(~, i~ ~h(~ ~ o ' �9 ~h- (z,  t) ] 

(6 is transverse coordinate read from the wall). 

For flow over a vertical plane there are both experimental [2] and theoretical [3] works 
which demonstrate the correctness of assuming self-modeling of the longitudinal velocity pro- 
file. The validity of the integral approach is also demonstrated convincingly in [4-6] where 
on the basis of it different nonlinear waves are calculated which agree quantitatively with 
observations in experiments [I, 7]. 

For long waves in the case of flow over a vertical cylinder assumption (1.2) is also 
quite reasonable. From a physical point of view the validity of relationship (1.2) may be 
established by comparing the results calculated by means of it with experimental or calcu- 
lated results found on the basis of Navier-Stokes equations. 

From (i.i) and (1.2) by integration along axis r [from R to R _+ h(z, t)] it is easy to 
obta in 

~.~_..~-'~--[1,2.~-- 11 ------ = g"~- "~- ()~ +.h)2 Of, "~- "~Z3J "-!- 

+ hg(7_-hm)]  + 

Oh B ao (1o3) 
a--T § R • h a~ = 0 '  

2 .  

/ = 3 0 / 4  - -  y2 § v4(3 /4  _ In  (y ) ) ) /4 (~  - -  I )  3, ~ = i __ h/R, 
5 2 5 t7 6 / ~ = ( y - -  t) - - + +  -~--y - - - - f -y4 4- - ~  y .+ 2y4 ln (y) - -  3y61n (y) + 

\ 4 -- in (y) . 

I n  d e r i v i n g  ( 1 . 3 )  u s e  i s  a l s o  made o f  t h e  k i n e m a t i c  c o n d i t i o n  a t  t h e  f r e e  s u r f a c e  

:fly = Oh/Ot + uOh/Oz, r = B .4-_ h(,., t). 

At the limit R + ~ (fl + i, f + -1) set (1.3) is converted into a set of Shkadov equations 
[ 8 ] .  

We note that a similar integral approach was used in [9] in studying downflow of a mag- 
netic liquid over the outer surface of a vertical cylinder. In the absence of a magnetic 
field the set of equations provided in [9] is a special case of set (1.3). 
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In this work calculation of the instability of the trivial solution and calculations of 
different nonlinear wave regimes were carried out on the basis of Eqs. (1.3) whose solution 
corresponding to waveless down!low is written in the form 

gh~ 
h =hN, q=qN--  3v ](~]zyB)" 

For down!low over a vertical plane this is the well-known Nusselt relationship. In order 
to study the stability of waveless down!low we place in set (1.3) the relationships 

h = h N -F h ' ,  q = q~ -F q' ,  (h', q') ~ exp [i~(z - -  yt)] 

(a = 2~/I, I is the disturbance wavelength). By linearizing it with respect to h', q', it 
is easy to find that 

-- y2YN + ]' 2,4 -~ Ym/1 (Ym) ~ 2ioU,~. / (y,r / 

~176  i " ) ~ / ' ( g : ' r  .=YN-+~ 2y2 ~ i - t -  ( 1 . 4 )  -4--- 2p .... " , - -  - -  

3VqIvR(Y~--i) t3i(YN)-t- "l d/ I )=O,  yN=t  ~h~/B. 
~--- 2iah~ ~f t, t--77m--m -- --ff -@ Y=YN, 

Then parameter a is assumed to be real and (1.4) serves in order to determine complex 
increment ~. If Im(1) > 0, then the corresponding disturbance increases with time, and if 

Im(7) < 0, then waveless flow is stable. 

In dimensionless variables the characteristics of neutral disturbances (Im(7) = 0, 
Cneut = Re(y)) obtained from (1.4) may be written in the form 

* l 2 [ ,2  t �9 ! i  
(aneut) = -~ WeR*(Y~v-- 1) tYNCneut--2'4"~NYNf'Cneut-~l '2 ~ 

~,2 a/: I + W . ~ ] ,  (i.5) 
-J- h~R----* d-y [Y=YN- 2YNR* / 

( "., ) �9 1 3/(yN) • ~ I + h ~ / ( Y N )  = O. --  -~- , C.eut yN] (y~) h~ ~ = ~  

H e r e  hN* = h N / h * ;  c* = 7 h * / q N ;  R* = R / h * ;  Re = q N / v ;  We = ( o / p ) h * / q N  2 = ( 3 F i / R e S ) l / 3 ;  F i  = 
( o / p ) S / g v 4 ;  a* = ~h*;  h* = (3vqN/g) 1/3. D i s t u r b a n c e s  w i t h  ~* < a n e u t *  i n c r e a s e  w i t h  t i m e ,  
but with a* > ~neut* they fade. 

Numerical analysis of Eqs. (1.5) showed that with any values of parameters We and R* 
there is a neutral disturbance and increasing modes. With R *-I = 0 (down!low over a verti- 

cal plane) it follows from (1.5) that aneut* = /3/We, Cneut* = 3, hN* = i. With an increase 
in wall curvature for down!low both over a wire and over the inner surface of a cylinder 
there is expansion of the region nonlinear instability (i.e., shorter wave modes become in- 
creasing modes), and the higher the We (small Re for an immobile liquid), the more marked is 
the deviation from the dependence /3/We. For the same value of R* with any We the region of 
increasing disturbances for flow over the inner wall of a cylinder is broader than the simi- 
lar region for flow over a wire. In contrast to down!low over a vertical plane, for flow 
over a cylindrical surface neutral curves with Re § 0 tend toward a finite value. 

In order to evaluate the correctness of the long-wave approximation used above, as a 
scale for longitudinal movement it is possible to take the wavelength of a neutral distur- 
bance, then it is easy to see that g = ~neut*/2~. As calculations showed, in the range 0 
R *-I ~ 0.2, 5 ~ We < ~ the value of g does not exceed 0.i. 

As follows from (1.5), the thickness of a waveless film hN* and the phase velocity of 
neutral disturbances Cneut* are only functions of the dimensionless cylinder radius R*. In 
the range 0 ~ R *-I ~ 0.2 the dependences hN*(R *-l) and Cneut*(R *-I) are almost linear func- 
tions and for down!low over a wire they decrease with an increase in wall curvature (hN*. 
(R *-l) ~ i, Cneut*(R *-I) ~ 3), but for flow over the inner surface of a cylinder they in- 

crease (hN*(R *-I) ~ I, Cneut*(R *-i) ~ 3). 
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Given in Fig. 2 is a comparison for curves for neutral stability calculated by Eqs. 
(1.5) (lines) with data in [i0] (marked by asterisks) where these dependences were calculat- 
ed by means of asymptotic expansion of the solution for Navier-Stokes equations wit]n respect 
to the long-wave parameter. In Fig. 2 the variables are dimensionless similar to [i0] and 

= 2~hN/l, Re 2 = UmaxhN/~ (Uma x is free surface velocity), R 2 = R/hN. Line 1 relates to 
downflow over a wire with R 2 = 3, We 2 = o/(pghN 2) = i00, 2 relates to downflow within a tube 
with R 2 = 3, We a = i00. The comparison demonstrates the good quantitative agreement which 
to a certain extent confirms the correctness of the integral approach used. 

In order to calculate periodic steady-state traveling solutions of Eq. (1.3) [q = q(z - 
ct), h = h(z - ct), c is phase velocity] of finite amplitude it is convenient to rewrite it 
in dimensionless form 

I + t,2 T~* \ ~  ,, (Y) = • We (R* • h*f a~* + W~ ~ -~ ]  + 

@ Z  • _____h* + ~-~ 

q, t • c, ( • h, h *~ < h *~\  ) h* = +~R-;-- • ~ 9R*/  ' g = i •  
�9 . r 

here ~* = /3-7~($/hs) ; $ = z - ct; h* = h/hs; R* = R/hs; q* = q/q0; c* = chs/q0; h s = (3vq0/ 

g)i/3; We = (3Fi/ReS)I/3; Z = (81Fi/Re11)z/6; Re = q0/v; qo= <q> = (I/%)] q(~)d~; i is the wave- 

length. 

By excluding q(~) (here and in the future we omit the dimensionless symbol) from the first 
equation of (1.6), in order to determine h(~) and c we find a unique equation. In order to 
calculate h($) we use expansion into a Fourier series: 

h (~) = ~ Hnexp[ian~], H-n = Hn ( 1 . 7 )  

(a  l i n e  means complex c o n j u g a t i o n ) .  

By c o n s i d e r i n g  t h e  f i r s t  N/2 ha rm o n ic s  in  ( 1 . 7 )  and by s u b s t i t u t i n g  in  t h e  e q u a t i o n  i t  
i s  e a s y  t o  o b t a i n  a s e t  o f  N + 1 n o n l i n e a r  a l g e b r a i c  e q u a t i o n s  f o r  d e t e r m i n i n g  t h e  two r e a l  
(H0, c)  and N/2 complex (H 1 . . . . .  HN/2) unknowns. In  v iew of  t h e  i n v a r i a n c e  o f  Eqs.  ( 1 . 6 )  
w i t h  r e s p e c t  to  t r a n s f o r m a t i o n  ~* § $* + c o n s t  i t  i s  p o s s i b l e  to  c o n s i d e r  t h e  phase  o f  one 
of  t h e  ha rmon ic s  in ( 1 . 7 )  known, f o r  example ,  Image(H1) = 0. 

The Newton method i s  used  f o r  n u m e r i c a l  c a l c u l a t i o n  o f  t h e  a l g e b r a i c  s e t .  A p s e u d o s p e c -  
t r a l  method and a p r o c e d u r e  f o r  r a p i d  F o u r i e r  t r a n s f o r m a t i o n  a r e  used  in  o r d e r  t o  c a l c u l a t e  
t he  F o u r i e r  ha rmonic  of  n o n l i n e a r  t e rms  in  ( 1 . 5 ) .  

In c u t t i n g  o f f  s e r i e s  ( 1 . 7 )  in  t h e  c a l c u l a t i o n s  i t  was n e c e s s a r y  to  s a t i s f y  t h e  c o n d i -  
t i o n s  IHN/21/supIHnl < 10 -3 For this the value of N in relation to ~, Re, and Fi was varied 
within the limits from 16 to 128. 

2. In Eqs. (1.6) there are three internal parameters: R, Z, We, or R, Fi, Re. We note 
that for downflow over a vertical plane (R + ~) in (1.6) only one parameter Z remains. Apart 
from external parameters in the problem there is one more internal parameter, i.e., wave num- 
ber a. External parameters have a clear physical meaning. In order to interpret the inter- 
nal parameter we turn to experiments in [i, ii]. In both [ii] and [i, 7] without special 
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organization of the flow surface films were covered by three-dimensional waves in both space 

and time. With imposition of pulses which are small in amplitude on liquid flow rate in the 
input flow cross section and with careful removal of spatial roughness for the wall a section 
is observed in annular waves regular in space and steady-state waves traveling with time. Wave 
periodicity was determined by the frequency of imposed pulsations, but the amplitude did not 
depend on the amplitude of the imposed vibrations. By changing frequency m (m = c/l = ~c/ 
2~), it is possible to see different wave regimes for a given liquid flow rate. In [ii] au- 
thors separated the waves observed into two classes, i.e., periodic and solitary waves. 

In theory the main difficulty in finding a solution of Eqs. (1.6) by the Newton method 
involves determining a good initial approximation. By using calculated results for waves 
for a vertical wall [4, 5] and moving with respect to parameters ~, R, Fi, Re, we calculated 
wave regimes in a wide range of external parameters down to very small values of ~ (-0.i). 
Calculated results are presented in Figs. 3-5. Since there are many parameters in the prob- 
lem, it is difficult to carry out a detailed study and the main attention is devoted to qual- 
itative differences between wavy downflow over a vertical plane and over the inner and outer 
walls of a vertical cylinder. 

The dependences of maximum thickness of a wavy film hma x on a number ~ for downflow over 
a wire and over the inner wall of a cylinder are presented in Fig. 3a, b, respectively. Here 
values of Re and Fi are fixed: Re = 4, Fi 1/11 = 6.8. Lines I, la-4, 4a relate to R -I = 0, 
0.05, 0.i, 0.2. Lines I, la in Fig. 3a relate to downflow over a vertical plane. Wave solu- 
tions in this case branch out from trivial solution h = i at point ~ = 1 and continue into 
the region of linear instability of waveless flow (~ < i) [8]. Down to ~ = 0.55 the wave 
profile of thickness is close to sinusoidal and with ~ + 0 it is converted into a sequence 
of solitary waves, i.e., negas solitons [12]. The comparison carried out in [5, 6] of ex- 
perimental results showed that waves of a given family (in future the first family of waves) 
correspond quantitatively to periodic regimes observed in experiments. Long waves of this 
family are unstable [5] and they differ qualitatively from those observed in long-wave ex- 
periments. 

It is noted in [13, 14] that apart from the first family of waves there are many differ- 
ent single-parameter families of solutions which develop from both the first family and from 
each other as a result of different bifurcations. Among the new families there appears to be 
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only one family separate in the sense of stability [14] (in future the second family) which 
branches from the first as a result of double period bifurcation. Line la in Fig. 3a relates 
to the second family, and as shown in [4-6] the regime of this family describes quantitative- 
ly long waves close to a sequence of solitary waves observed in experiments. 

With downflow over the outer surface of a cylinder similar to downf!ow over a vertical 
plane there exist at a minimum two families of wave solutions which have at the limit with 

~ 0 negative solitary waves (lhmax - <h> I < lh~in - <h>l, <h> ~s average wave thickness 
over the length) and positive waves (lhmax - <h>~ > lhmin - <h> I .i The first branc]h branches 
from the trivial solution (lines 2-4 in Fig. 3a), and the second (lines 2a-4a in Fig. 3a) 
branches from the corresponding solution for the first family with doubling of the spatial 
period. The asymptotic behavior of wave characteristics of solutions for these two branches 
differs markedly. Thus~ with small ~ values of hma x for solutions of the branch which has 
at the limit with ~ ~ 0 positive solitary waves (lines la-3a~ 4 in Fig. 3a) increase with a 
reduction in ~, and values of hma x for solutions of the branch which has at the limit "nega- 
tive" solitary waves (lines 1-3, 4a in Fig. 3a) decrease. It is also noted that values of 
hma x and other wave characteristics change in a markedly smaller range from the branch which 
has at the limit "negative" solitary waves, than for values of these characteristics for the 
branch which has at the limit positive solitary waves. 

There is a single qualitative difference in downflow over a wire of quite small radius 
from downflow over a plane. Considering curvature the branch which has at the limit a posi- 
tive solitary wave may branch immediately from the trivial solution (line 4 in Fig. 3a) in 
contrast to downflow over a plane where this branch originates from the wave of the first 
family. 

With downflow over the inner surface of a vertical cylinder some qualitative similarity 
is also observed with downflow over a plane, but the difference is more marked. Thus, for 
values of R -I < Rcr-l(Re, Fi) there are two branches of solutions which have at the limit 
with ~ + 0 a positive solitary wave (lines 2a, 3a in Fig. 3b) and a negative wave (]Lines 2, 
3, 4a in Fig. 3b). For R -l > Rcr -I the branch with branches from the trivial solution ceases 
to exist for ~ < ~cr (line 4 in Fig. 3b). The wave amplitude on approaching point ~cr de- 
creases rapidly and it takes a considerably larger number of harmonics in series (1.7) in or- 
der to satisfy the cutting-off conditions. Further advance along line 4 in Fig. 3b is limit- 
ed by the computing possibilities. The value of hma x is close to the value of tube radius, 
and the minimum thickness value is close to zero. 

Thus, from the results presented in Figs. 3a and b it is possible to conclude that for 
downflow of a liquid film over the outer surface of a vertical cylinder and over an inner 
surface of quite small curvature there exist at a minimum two branches differing markedly 
with respect to the properties of the solutions whose regions for existence intersect with 
comparatively small wave numbers. One of the branches at the limit ~ § 0 is converted into 
a sequence of solitary negative waves which for flow over a vertical surface were unstable 
[5]. We shall not consider further such solutions for a cylinder of finite radius in view 
of their instability. 

Presented in Fig. 3c, d for some wave regimes with fixed ~ are dependences of maximum 
film thickness hma x on Re for downflow over a wire and over the inner surface of a cylinder, 
respectively. Here Fi 1/11 = 6~8 and lines 1-3 relate to wave regimes with ~ = 0.8, and lines 
4-6 relate to ~ = 0.3 (long waves which have at the limit a positive solitary wave). Lines 
i, 4 in Fig. 3c relate to the value R -I = 0; i, 4 in Fig. 3d to 0~05; 2, 5 in Fig. 3c, d to 
0.i; 3, 6 in Fig. 3c, d to 0.2. 

We note some features of the behavior of the dependences for long waves (lines 4-6) pre- 
sented in Fig. 3c, d. For them there are points of return Rer(R -~) (dependences in Fig. 3 
are provided after these points by broken lines), after which there may be degeneration into 
the corresponding wave of the first family of a triple period (lines 4-6 in Fig. 3c and 4, 5 
in Fig. 3d) or a second point of return exists (line 6 in Fig. 3d) on reflection from which 
the dependence again goes into a region of high Reynolds numbers. Similar calculations for 
long waves with other values of ~ also show existence of return. For a fixed value of R -I in 
plane (~, Re) the point of return forms several lines Re,(~). Depending on from which line 
the reflection occurs the wave may degenerate into the corresponding solution of the first 
family of double, triple, etc. spatial periods. Numerical calculation of these lines over a 
quite wide range of parameters Re and ~ is a difficult computation task and it is not per- 
formed in this work. With downf!ow over a vertical plane lines of returns are presented in 
[14]. 
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For quite small values of R -I (lines i, 2, 4, 5 in Fig. 3c, lines i, 4 in Fig. 3d) an 
increase in Re leads to an increase in wave amplitude as follows from Fig. 3c, d (sections 
of broken lines are not considered since their regimes are unstable). For values of R -I re- 
lating to lines 3, 6 in Fig. 3c and 2, 3, 5, 6 in Fig. 3d an increase in Re leads to the reverse 
effect. With downflow over the inner surface of a cylinder of quite small radius with an 
increase in Re there is a critical increase in the maximum film thickness as follows from 
Fig. 3d. 

Presented in Fig. 4a, b are dependences for maximum film thickness hma x on Fi 1/11 for 
downflow over a wire and over the inner surface of a cylinder. Here Re = 4, line 1 in Fig. 
4a relates to a wave with a = 0.9 with R -l = 0, lines 2-4 in Fig. 4a and 1-3 in Fig. 4b re- 
late to a wave with ~ = 1.0 with R -I = 0.05, 0.i, 0.2, respectively. Lines 5-7 in Fig. 4a 
and 4, 5 in Fig. 4b relate to waves with ~ = 0.32 and 0.4 (long waves which have at the lim- 
it a positive solitary wave) with R -I = 0.05, 0.i, 0.2, respectively. 

It can be seen from Fig. 4a, b that depending on wall curvature an increase in Fi 1/11 
may cause both an increase in wave amplitude (cylinder of small radius) and a reduction of 
it. In Figs. 4c and 5 the maximum film thickness hma x and some characteristic profiles of 
thickness as a function of cylinder radius are presented. Here Re = 4 and Fi 1/11 = 6.8, 
lines i, 2 in Fig. 4c relate to a wave regime with ~ = 1.0 and 0.32 flowing over the outer 
surface of a cylinder, and lines 3, 4 in Fig. 4c relate to regimes with a = 1.0 and 0.4 
flowing over the inner surface of a cylinder. In Figs. 5a-c regimes with a = 0.4 relate to 
downflow over the inner surface of a cylinder with R -I = 0.05, 0.i, 0.15, respectively. 

From the results presented in Figs. 4c and 5 it follows that an increase in curvature leads 
to an increase in wave amplitude. For downflow over an inner cylinder surface for each 
there exists a value of radius Rcr which with approach toward it there is a very rapid in- 
crease in maximum thickness. 

Thus, different wave regimes are considered for downflow of a thin layer of viscous 
liquid over the inner and outer surfaces of a vertical cylinder. Using the integral method 
a set of equations is obtained which describes the evolution of long-wave disturbances. It 
is shown that in the problem there are three external parameters: Re, Fi, and R -I. The lin- 
ear stability was studied for waveless downflow and quantitative conformity is demonstrated 
with similar results found on the basis of asymptotic expansion of the solutions of Navier- 
Stokes equations. Waveless downflow is unstable with all values of external parameters. 
Evolution of disturbances is governed by gravitational force (supply of energy), viscous 
forces (energy drainage)~ and forces of surface tension. It is shown that surface forces 
connected with wall curvature are destabilizing and tend to increase the deviation of the 
film from the average value in contrast to capillary forces which develop with longitudinal 
Variations of film thickness. As a result of evolution steady-state traveling flow regimes 
may form which are also considered in this work. The main attention is devoted to the quali- 
tative differences in the behavior of wave characteristics for flow regimes over a cylinder 
from similar dependences for flow over a vertical plane. 

Calculations showed that for flow over the outer surface of a vertical cylinder there 
are at least two single-parameter wave families for which with fixed Re, Fi, and R -I there 
is a wave number ~. Waves of these families at the limit a + 0 are converted into a se- 
quence of either negative or positive solitary waves. 

For flow over the inner surface of a vertical cylinder the family which has at the lim- 
it a negative solitary wave exists with all values of external parameters, but a family which 
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has at the limit a positive wave only exists with relatively small amounts of wall curvature~ 
For flow in a tube of quite small radius an effect is detected in calculations of a ~catas- 
trophic' increase in amplitude of the established waves with advance into a region of in- 
stability for the smooth solution. 

The effect is analyzed of all parameters on nonlinear wave characteristics and it is 
shown that depending on R -I an increase in Re or a decrease in Fi may cause both strengthen- 
ing of wave processes and a reduction of them, in contrast to down,low over a vertical plane 
where this led to an increase in wave amplitude. An increase in E "I always intensifies wave 
processes. 
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